Tiling with Commutative Rings

نویسنده

  • THOMAS LAM
چکیده

so that every square is covered by exactly one domino? In other words, can R be tiled by vertical and horizontal dominoes? The coloring gives the answer to this well-known problem away. The region R has 32 black squares and 30 white squares. Since each domino covers exactly one black and one white square, no tiling is possible. The aim of this article is to explain a way to tackle tiling problems using a little commutative algebra. More precisely, we will explain how to obtain coloring arguments, similar to the above chessboard coloring, in a systematic way. I will assume that the reader is familiar with linear algebra and have seen rings and ideals before.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the commuting graph of non-commutative rings of order $p^nq$

Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with vertex set $RZ(R)$ and two vertices $a$ and $b$ are adjacent iff $ab=ba$. In this paper, we consider the commuting graph of non-commutative rings of order pq and $p^2q$ with Z(R) = 0 and non-commutative rings with unity of order $p^3q$. It is proved that $C_R(a)$ is a commutative ring...

متن کامل

On the commuting graph of some non-commutative rings with unity

‎‎Let $R$ be a non-commutative ring with unity‎. ‎The commuting graph‎ of $R$ denoted by $Gamma(R)$‎, ‎is a graph with a vertex set‎ ‎$Rsetminus Z(R)$ and two vertices $a$ and $b$ are adjacent if and only if‎ $ab=ba$‎. ‎In this paper‎, ‎we investigate non-commutative rings with unity of order $p^n$ where $p$ is prime and $n in lbrace 4,5 rbrace$‎. It is shown that‎, ‎$Gamma(R)$ is the disjoint ...

متن کامل

Exact annihilating-ideal graph of commutative rings

The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.

متن کامل

AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS

In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.

متن کامل

The principal ideal subgraph of the annihilating-ideal graph of commutative rings

Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set   of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where   $mathbb{P}(R)$ is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008